TABLE 1
Observed and Calculated d-apacings and Unit Cell
Dimensions of BaWO4-II

1-	1-	- 1	4	4 1-	I _{obs}	
h	k	1	d _{obs}	d _{calc}	 2005	
2	0	0	6.588	6.565	M	
0	1	1	5.188	5.174	VW	
2	1	-1	4.163	4.154	M	
2	1	1	3.980	3.977	VW	
0	2	0	3.582	3.581	VW	
2	0	2	3.349	3.346	S	
4	0	0	3.284	3.283	S	
0	2	1	3.232	3.230	S_	
2	0	2		3.163	2	
ī	2	1	3.162	3.157	S ₊	
4	1	0	2.985	2.984	М	
2	2	1	2.933	2.931	M_	
2	1	2	2.895	2.893	M_	
2	2	1	2.868	2.866	M	
$\overline{4}$	1	1	2.831	2.830	M_	
4	1	1	2.717	2.717	W	
3	2	1	2.565	2.564	W	
5	1	1	2.387	2.386	VW	
$\overline{4}$	2	1	2.336	2.336	W	

a=13.159±0.012Å , b=7.161±0.003Å , c=7.499±0.006Å β =93.76±0.05° , V=705.2±1.0Å , Z=8 Space group ; P21/n

these patterns as depicted in Fig.1, between the wolframite structure ($CdWO_4$) and the present high pressure $BaWO_4$ and also $PbWO_4$ of high pressure form. In the figure, I and II stand for the high pressure forms of $BaWO_4$ and $PbWO_4$, respectively, and III for $CdWO_4$. The pattern of $PbWO_4$ is similar to that of $BaWO_4$. These patterns strongly suggest that the structure of high pressure $BaWO_4$ is different from the wolframite one. We, therefore, tentatively name the present high pressure product as $BaWO_4$ -II.

FIG. 1

Comparison between the powder patterns ($CuK\alpha$) of $BaWO_4$ -II, high pressure form of $PbWO_4$ (3) and the wolframite structure ($CdWO_4$)(6).

Pressure-Temperature diagram of BaWO₄

These statements are further confirmed by the structure analysis based on the four circle goniometer data. Although the details of the structure will be reported in a separate paper, it is worthwhile noting here that the average coordination number of the cations has increased as compared with that of either the wolframite- or the scheelite-structure.

Although BaWO₄-II was quenchable as described above, this was completely transformed to BaWO₄-I upon heating in air at 800°C. This

suggests that the transformation is reversible.

Phase diagram: Througut the entire experimental runs, the product was always either a mixture of the I and II forms or a single phase of the respective one. This enables us to establish